概述
groupby()可以根据DataFrame中的某一列或者多列内容进行分组聚合,当DataFrame聚合后为两列索引时,可以使用unstack()将聚合的两列中一列值调整为行索引,另一列的值调整为列索引。
代码
test_df = pd.DataFrame({ 'col_1':['a', 'a', 'b', 'a', 'a', 'b', 'c', 'a', 'c'],
'col_2':['d', 'd', 'd', 'e', 'f', 'e', 'd', 'f', 'f'],
'col_3':[ 1, 2, 3, 1, 4, 5, 6, 4, 5]})
1.仅对数据进行分组聚合
df1=test_df.groupby(['col_1', 'col_2']).count()
df1:
col_3
col_1 col_2
a d 2
e 1
f 2
b d 1
e 1
c d 1
f 1
df.index:
MultiIndex(levels=[['a', 'b', 'c'], ['d', 'e', 'f']],
labels=[[0, 0, 0, 1, 1, 2, 2], [0, 1, 2, 0, 1, 0, 2]],
names=['col_1', 'col_2'])
df1.columns:
Index(['col_3'], dtype='object')
2.对分组聚合后的数据进行unstack
df2=test_df.groupby(['col_1', 'col_2']).count().unstack()
df2:
col_3
col_2 d e f
col_1
a 2.0 1.0 2.0
b 1.0 1.0 NaN
c 1.0 NaN 1.0
df2.index:
Index(['a', 'b', 'c'], dtype='object', name='col_1')
df2.columns:
MultiIndex(levels=[['col_3'], ['d', 'e', 'f']],
labels=[[0, 0, 0], [0, 1, 2]],
names=[None, 'col_2'])
3.对分组聚合后的某列进行unstack
df3=test_df.groupby(['col_1', 'col_2']).count()['col_3'].unstack()
col_2 d e f
col_1
a 2.0 1.0 2.0
b 1.0 1.0 NaN
c 1.0 NaN 1.0
df.index:
Index(['a', 'b', 'c'], dtype='object', name='col_1')
de.columns:
Index(['d', 'e', 'f'], dtype='object', name='col_2')
原创文章,转载请注明出处:http://124.221.219.47/article/groupbyunstack/