rom sklearn.proprecessing import Imputer
imp = Imputer(missing_values='NaN',strategy='mean',axis=0,verbose=0,copy=True)
trainset1 = imp.fit_transform(trainset)
主要参数说明:
missing_values:缺失值,可以为整数或NaN(缺失值numpy.nan用字符串‘NaN’表示),默认为NaN

strategy:替换策略,字符串,默认用均值‘mean’替换

①若为mean时,用特征列的均值替换
②若为median时,用特征列的中位数替换
③若为most_frequent时,用特征列的众数替换
axis:指定轴数,默认axis=0代表列,axis=1代表行

copy:设置为True代表不在原数据集上修改,设置为False时,就地修改,存在如下情况时,即使设置为False时,也不会就地修改

sklearn概括,https://blog.csdn.net/leadai/article/details/78505106 参考https://mp.weixin.qq.com/s?__biz=MzI5MjM4MDM1Nw==&mid=2247484382&idx=1&sn=2b8c4cb3b538ea442d302d8557e0e4ab&chksm=ec030874db748162a49452b8ba75c9d308e5d95a1b6acc71a440365090f492c2ab39b539fb21&mpshare=1&scene=1&srcid=08186LQegqpH9Onh1Vm5PXjd#rd

原创文章,转载请注明出处:http://124.221.219.47/article/sklearns/